翻訳と辞書
Words near each other
・ Dehradun Cantt (Uttarakhand Assembly constituency)
・ Dehradun district
・ Dehradun Express
・ Dehradun Gorakhpur Express
・ Dehradun Jan Shatabdi Express
・ Dehradun Municipal Corporation
・ Dehradun Muzaffarpur Express
・ Dehradun railway station
・ Dehradun Shatabdi Express
・ Dehmoy
・ Dehmurd
・ Dehn
・ Dehn function
・ Dehn plane
・ Dehn surgery
Dehn twist
・ Dehn v Attorney-General
・ Dehn's lemma
・ Dehnagareh
・ Dehnar
・ Dehnar, Mazandaran
・ Dehnar, Tehran
・ Dehnash
・ Dehnawe Farza
・ Dehnberger Hoftheater
・ Dehne
・ Dehnenkopf
・ Dehner
・ Dehner Company
・ Dehnhaide (Hamburg U-Bahn station)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dehn twist : ウィキペディア英語版
Dehn twist

In geometric topology, a branch of mathematics, a Dehn twist is a certain type of self-homeomorphism of a surface (two-dimensional manifold).
==Definition==

Suppose that ''c'' is a simple closed curve in a closed, orientable surface ''S''. Let ''A'' be a tubular neighborhood of ''c''. Then ''A'' is an annulus and so is homeomorphic to the Cartesian product of
:S^1 \times I,
where ''I'' is the unit interval. Give ''A'' coordinates (''s'', ''t'') where ''s'' is a complex number of the form
:e^ \theta}
with
:\theta \in (),
and ''t'' in the unit interval.
Let ''f'' be the map from ''S'' to itself which is the identity outside of ''A'' and inside ''A'' we have
:\displaystyle f(s,t) = (s e^ 2 \pi t}, t).
Then ''f'' is a Dehn twist about the curve ''c''.
Dehn twists can also be defined on a non-orientable surface ''S'', provided one starts with a 2-sided simple closed curve ''c'' on ''S''.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dehn twist」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.